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Abstract

The mechanism for energy and signal transport in proteins as suggested by Davydov is discussed. The idea is
based on a coupling of amide-1 oscillators to acoustic phonons in a hydrogen bonded chain. Results as obtained
with the usually used anséatze are discussed. The quality of these states for an approximate solution of the time-
dependent Schrédinger equation is investigated. It is found that the semiclassical ansatz is a poor approxima-
tion, while the more sophisticated, ¥Dstate seems to represent the exact dynamics quite well. This was shown

by extensive calculations, both analytically and numerically in the two preceding papers. Calculations at a
temperature of 300K for one chain, as well as for three coupled ones (as thegsare jor ana-helix) are
presented and discussed. From the calculations it is evident, that Davydov solitons are stable for reasonable
parameter values at 300K for special initial excitations close to the terminal sites of the chain. Further vibra-
tional spectra are presented and discussed. Our results suggest, that due to their strong dependence on the initial
state, the Davydov |[B model system might be a (quantum) chaotic one.
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essentially of C=0 stretch type, because one quantum of this
Introduction vibration has an energy of 0.205 eV, roughly half of the en-

ergy released by ATP hydrolysis. From this starting point
A recent review of Davydov soliton theory and its implica- Davydov developed his physical model for the energy trans-
tions was given by Scott [1]. A basic problem in biophysicsport. In a-helical proteins the C=0 groups of a turn in the
is the storage and transport of energy through protein chainbelix form hydrogen bonds to the N-H groups in the next
This energy in biological systems is released by the hydrolyturn. As indicated in the following sketch (see section II)
sis of adenosinetriphosphate (ATP) molecules which amountdese hydrogen bonds are coupled harmonically to each other
to about 0.4 eV (see [1-5] for further details and references)n chains parallel to the helix axis and perpendicular to the
It was Davydov’'s [2-5] idea that the best candidate for storcovalent backbone. There are always three parallel chains of
ing this energy in proteins is the amide-I vibration, which isthis kind in aro—helix. Within such a chain the C=0 oscilla-
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tors are coupled via their transition dipole moment with eachnamics obtained in this way and by g3Dsimulation [14,
other. This type of coupling is a linear one and makes thd5] (parts of this work can be found also in [32]). Attempts
system dispersive. However, the chain of linearly couplednto this direction have been reported also previously by
hydrogen bonds forms a phonon system. Since the excitatioBruzeiro-Hansson, Christiansen and Scott [33]. After discuss-
energy of the amide-1 oscillators is naturally dependent oring the validity of ansatz states in [14, 15], we want to give
the length of the hydrogen bond in which the C=0O groupin this work a variety of applications of these ansétze to pro-
takes part, the system of amide-| oscillators is coupled to theeins. For this purpose, we do not want to discuss only the
acoustic phonon system of the hydrogen bonded chain (theore correct |>> state, but also the results obtained from its
so-called lattice). This makes the system non-linear and thugemiclassical, adiabatic counterpart, the so-callge $Eate.
it could be possible that an initially localized excitation would We decided to present also these results and a short discus-
not disperse, but travel in the chain as a solitary wave. Thsion of the validity of this state because, as mentioned above,
coupling constant can be estimated experimentally. Thesi is still widely used in the literature, also in applications to
experimental estimates place its value in a region betweeather systems.
20 and 70 pN. However, mainly we are concerned with the>|Btate.
These basic concepts of the Davydov soliton mechanisnsince it was found previously [14, 15] that this ansatz pro-
for energy transport in proteins [2-5], as well as the differenwides a reasonably exact description of the dynamics of ini-
attempts to include the effects of finite temperature into theial excitations in the Dagdov model, we apply it in this
model [4-13] and the controversy about thermal stability ofwork also to compute spectra and review some recent ex-
protein solitons is discussed in [1,6] and in our previous paperimental results in view of our theoretical spectra. Further
pers [14, 15]. Therefore we do not want to elaborate on thesge discuss in some detail why it would be more or less im-
points here. The extensive discussion on the validity of theossible to detect Davydov solitons by conventional vibra-
different ansatz states used in the literature [16-25] is alstional spectroscopy. From this we conclude, that spectroscopic
reviewed there [6, 14, 15]. Numerous possibilities for appli-experiments which failed [39] to detect Davydov solitons in
cations of these ideas also to other systems are discussptbteins cannot be viewed as a prove for the non-existence
again by Scott in his review [1]. One should mention, thatof them. Reviews on recent experimental and theoretical re-
for a simplified semiclassical | ansatz it was found that sults on biomolecules including proteins and DNA can be
the stability of solitons increases with the number of amidefound in [39], where also recent considerations on solitons
| quanta they carry (see e.g. [1, 8c]). However, to the knowland bisolitons in DNA and proteins are discussed.
edge of the author, it was never investigated whether or not
this is also true for the so-called, fbansatz, which includes
quantum effects in the lattice, where the equations of motiorrhe Davydov Model for a-Helical Proteins
for multi-quanta states are far more complex than in tie |D

case [24], where just the norm of the state has to be changeg order to make this paper self-contained we want to repeat
to g in case of g quanta. In the equations of motion for thgyere briefly the basic properties of the Davydov model, al-
|D,> state the norm simply cancels. In a series of papers Wgough they can be found in [14]. However, the discussion in
dealt mainly with ansatz states which include quantum efthe previous papers of this series are quite extensive, and we
fects in the lattice into the description and with the inclusiony|| refer in this work to the derivations and results presented
of effects of finite temperature into these theories [6, 14, 15there in several cases. Thamiltonian introduced by

22, 27-30]. However, since the [Pstate is often used in the pavydov for proteins has been discussed extensively in the
literature and exact solutions for it are available, we diSCUSﬁterature_ However, for the purpose of clearcut definitions in
this state and the results of its numerical applications also |fhe fo”owing, we repeat the basic formulas here. The Davydov

the present work. Furthermore, the use of adiabatic anséatzgamiltonian for our problem [2] in its spatial representation
in the spirit of |D> in other systems might be justified and reads as

thus the investigations of the properties of this ansatz is of
interest by itself.
Since we are extending at present the application ef [D Hp = 2 [Eo aha - J(Aj1 Anat é;+lén)+
type ansatz states also to the case of polyacetylene [31] and =
other conducting polymers, it was desirable to obtain detailed "2 0
informations on the limitations of this ansatz. For this pur- + ﬂ+ W(q -0, )2+Xaﬁ an(q - q})g 1)
. M 2 n+l n+l
pose we had expanded the exact solution 2

®) = exg - iH pt /7| iltoni
@) exy{ Hot/ ]| o) for the Davydov Hamiltonian In eq. (1) &;(&,) are the usual boson creation (annihila-

(I:ID), where ¢> is the initial state, in a Taylor series in tion) operators for the amide-I oscillators at sites n (see fol-

time and compared the results with those from a Emu- lowing sketch), while the displacemeni () and momen-

lation in the previous papers of this series [14, 15]. In this

way we found a good agreement between the short time d}ym (p,,) operators refer to the amino acid residues at site n.
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l l Note, that a remark of Kapor [34] concerning the role of
the lattice in a special case (decoupled) does not apply as

Main Polypeptide Chain = wy=0; k#N

/ / shown in [14]. 5; (Bk) are creation (annihilation) operators

):O _____ H—N O---- for acoustic phonons of wavaimber k. The anslational
mode has to be excluded from all summations. In the
simulations presented we use the asymmetric interaction
model where, as mentioned above, only the coupling of the
oscillator n to the hydrogen bond between n and n+1, in which
the oscillator takes part, is considered. denotes the

The amino acid residues are bound covalently to the pragigenfrequency of the noal mode k andJ contains the

tein backbone_, Which_has a helic_al structure a_nd our un_its_rﬁormal mode coeitients. w and U are obtained by
1, n, n+1 are situated in neighboring turns of this helix. Within =
the backbone the residue no. n+1 is just the fourth one frorﬁiagonalization of the matri¥ with elements
the residue no. n. From infrared spectra the excitation en- N

ergy of an isolated amide-l oscillator can be deduced

n-1 n n+1

L > Helix Axis

(E,=0.205 eV). Usually for all parameters in eq. (1) site-yv = %{(2_{%]1_5”,\‘)5 nm‘(1‘5 nN)5 =
independent mean values are used. The average value for the

coupling of the transition dipole moments of neighboring _(1_6n1)6m,n—1}

amide-| oscillators (only first neighbor interactions are (3)
explicitely taken into account) is J=0.967 meV. The average

spring constant of the hydrogen bonds is taken usually to b —+\—/g)kk = (*)E5k|< : L_J+ U :99* =1

W=13 N/m, as measured in crystalline formamigg.is the

momentum andj,, the position operator of unit n. The mass

) o This form of V implies that we use an open chain and N
M of a peptide unit is taken as the mean value of the masses . = , , i
of the units in myosine (M=114mm_is the proton mass). units (s'ee [37]). Th'us the term_lna'l umts of our chain are as
The energy of the CO stretching vibration in hydrogen bondsShown in the following sketch, indicating that the left termi-
is a function of the length r of the hydrogen bond (EB). nus of the chain contains a free NH bond, while the right

For ¥ the experimental estimates are 35 pN and 62 pN. A erminus has a free CO bond. Both of them, however, could
initio calculations on formamide dimers usually lead to e connected to random-cditpleated sheet or enzymatically

X = 30-50 pN. However, with small basisaetnitio Hartree- active regions of different structure (e.g. ogaig ATP hy-

Fock calculations (no electron-electron correlations included)c,mlys's)'
wrong results, even negative valuesorere obtained (see

e.g. [1] for a review and references). Note, that in the model

a given amide-I oscillator interacts only with that hydrogen

bond of the chain, in which the CO bond is directly involved,

since interactions with other hydrogen bonds are much l l l

Main Polypeptide Chain

smaller, and thus negligible.
The one-particle Hamiltonian [2, 3], where one-particle
refers to the quanta of the amide-I vibration, in second

. o / /
quantized form is given by H—N B:o ...... H- N
):O ...... H- N o
| \
|:|D = Z[an;%_‘](a;ﬂan-kaﬁawl)] + 1 n N
n=1

r > Helix Axis

N-1 [ 1N o 0
+ Zhwk O by 6k+5+ ZBnk(bk"'bE)a;anD
=1 B =1 | )



J. Mol. Model.1997, 3 81

%_]E“

General Treatment of Time-Dependent Ansatz States a
D

To solve the time dependent Schrédinger equation (approx@_’ I @H[ % (10)

mately)

where superscript tr denotes the transpose of the vector.
In case of the | state (see below), Davydov [2,3] used a
form of Hamilton’s method, which leads to incorrect equa-

we can always introduce an appropriate ansatz with a sdipns (later applied by numerous authors), because, as Skrinjar
of time dependent unknown paramebe(s et al. [19] point out, in that case the choice of canonically
- conjugated variables is quite ambiguous (the Lagrangian is

linear in the generalized velocities).

nSw> = Hiy> (4)

[W> = | yx(®)]> ()

For the optimization of these parameters as function offhe Semiclassical ID>> Ansatz
time we have several options. In this work we prefer the
Lagrangian method, following Skrinjar et al. [19]. Then first The most simple form of an ansatz fop|is the so-called
of all we have to evaluate the Lagrangian of our system: ID,> state, suggested first by Davydov [2], which is a prod-
uct state of the exact solutions for the isolated oscillators and
the isolated amide-I subsystem with unknown time-depend-

L[)—((t)' t] - ent parameters:

2R See < Sy by (6)
t _ + "~
D> = zan(t)an|0>eU|0>p (11)

With the usual variatonal treatment (in our case the norm
is automatically conserved and thus no additional Lagrange \here
multiplier is necessary)

ujo>, = expDL—| Y bilt \Zélexgibk(t)bww

t2
5 [ Ux0).q dt =0 7) 3
t1
= expé[bk(t)bk bk(t)bk]§0>p

we obtain finally the equations of motion for our param- (12)

eters from the Euler-Lagrange equations

The R(t) are the coherent state amplitudes ag(di)lFais
d aL[>_<(t),t] aL[>_<(t),t] the probability to find an amide-I quantum at site hede
ot a).((t) - ax(t) =0 (8) are the quantities which have to be determined. Note, that
= = the second form of the lattice part holds only if the operator
acts on the phonon vacuum |@0>, is the exciton vacuum
It can easily be shown by a sequence of partial integrafor the amide-| vibrations). The second variant of the lattice
tions in eq. (9), that this method is completely equivalent toart of the state can be written also in the form
the application of Frenkel's time-dependent variational prin-
ciple [31]:

tz U|0>p=expgihi—Z[@m(t))bm_@n(»q"]gl b (13)
6J’<qJ| ﬁh%—ﬂﬁllwdt:() )

where now the expectation values of the displacement
. _ and momentum operators are the unknown quantities. Physi-
Again completely equivalent would be the use of cajly, this ansatz assumes, that the amide-I oscillators would

Heisenberg equations for time-dependent operators [19] afiot excite lattice phonons according to their individual exci-
of Hamilton's principle in the form (H is the expectation value tation states, but in an averaged way.

of the Hamiltonian) [19]
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Equations of Motion Clearly, for a larger coupling, the speed of the excitation wave
becomes smaller. This is evident for the casg ef40 pN

The equations of motion for the JPstate containing one and aj =62 pN (not shown here) the soliton becomes pinned

guantum of amide-I| vibration can be derived by theat the initial excitation site. Note, that the width of the soliton

Lagrangian method describ@thoveand subsequently be is far too small to justify a continuum approximation.

transformed from the normal mode to the coordinate repre- In Figure 2 we show the interesting case of two solitary

sentation: waves which collide in the center of théain. These
simulations are performed again with two quanta of amide-|
oscillation, however, each quantum is localized initially at

iha, = —J(an+1+ an_1)+ X(q n+l—qn)an the two different terminal sites of the chain. Thus from each
) ’ chain end a one-quantum wave starts to travel through the
Pn ZW(qn+1_ 2q, + q1—1) +X(|an F-lanml ) chain and solitons form only for couplings larger than roughly
. P, (14) 40 pN in contrast to the previous case where both quanta

On = ™M were located within one wave. For coupling constants be-

tween 40 pN and roughly 60 pN the two solitary waves col-
lide and penetrate each other without a visible interaction
The numerical solution of these equations can be acconbetween them (Figure 2a). However frgre 62 pN (Figure
plished with the help of a fourth order Runge-Kutta method.2b) a new phenomenon occurs, namely one of the two solitons
However, in the continuum approximation the equations canakes a fraction of the amide-I quantum contained in the other
be solved also analytically. But our results indicate, that thexne, which after the interaction disperses, while the former
widths of solitons in the discrete case are too small to justifybne travels with a larger amplitude and reduced velocity to
that approximation [13b]. Note, that the lattice parts of eqthe chain end where it is reflected. The asymmetry of the
(15) are not entirely classical as their form might suggesttwo solitary waves originates in the above discussed asym-
but the ¢'s and p's have to be viewed as expectation valuesmetry of the two terminal amino acid residues of a chain.
of the corresponding quantum mechanical operators rathetarting from roughly 70 pN coupling strength, the two one-
than as classical variables. However, thg>|Btate is the  quantum solitons repell each other i.e. their velocity becomes
smaller, the closer they get and after the collision they fuse
to a single, pinned two-quantum soliton (Figure 2c).
and momenta are replaced by real numbgf§ and p(t), Thug, Wg can concluqde that solitons e(xisq[ in the)Davydov
respectively [35, 36]. In the case of Q quanta of amide-| Viq, e for reasonable values of the parameters at T = 0 K, if
bration which all occupy the same state, only the equationg, o |D> ansatz would be a reliable approximation. This prob-
of motion for the time derivative of the lattice momenta [€d.|o, is dealt with below. First we want to concentrate on tem-
(15)] change to [8] perature effects.

exact solution for|3|D if the operators of the displacements

Applications Temperature Effects

The numerical results show, that for one-quantum stateg gjcaly for the semi-classical JDansatz there are two
solitons at T = 0 K can be formed, and appear in the 1gioR, /s for the inclusion of temperature effects into the theory.
of X larger than roughly 40 pN for a spring constant of 13 N/gj o4 o all we can populate the normal modes of the lattice
m for the hydrogen bonds. Further it tums out [1,8] that the, i 4 the initial amide-I excitation with a thermal distribu-
stability of the solitons increases, when the number of amides|,, ot yhonons according to Bose-Einstein statistics [12,13].
quanta they carry is increased. In Figurel we show OUfpe iher widely used method is the application of a
simulations for a two-quanta state for three different Value&f_angevin equation to the lattice. This reads as
of X. The plots show for each simulation the probabilW la

to find the two amide-l quanta at site n and at time t, and in

addition the square of the local lattice deformatigr @y, — Mg, = W(qn+1_ 2q,+ qn_])+

qn)2 again as function of site n and time t. It is obvious, that 5

at a couplingx = 20 pN the excitation disperses, and in the +X(|an| ~lan-1 F)*‘ Fot)-MT g,

lattice we see only the shock wave coming from the initial
excitation and travelling with the speed of sound through the

chain. If we increase the coupling to 30 pN clearly a soIitary[S] VYI'T::: tt/cg ZgiL:?c)trlwc;rl] tfg:ézecg?rcéiatc?rzz ;i”&i'n;ggcorﬁ?(g:_d
wave is formed, which travels without dispersion through' ™ P 9

the chain and survives the reflection at the chain end. In thigOm of the system which are not explicitely treated, i.e. they

case we recognize in the plot of the squared lattice deformg: ¢ considered as a heat bafl{)fare random forces with &
aGaussian distribution. Via their correlation function tempera-

tion, which is proportional to the local potential energy of : . . .y
the lattice, that in addition to the shock wave a deformatiorﬂgs t(;]aer;rté?‘nl.ntroduced by virtue of the fluctuation-dissipa-

follows the soliton, and stabilizes it against dispersion.

(16)
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Figure 1. The probability |g (a,c,e) and the squared local <E(x )E(0.0) > = 2MKkaT Fa3( A5( 1 17
lattice deformation D (b,d,f) as functions of site n and time (X’ ) ( ’ ) Ks (X) ( ) (17)

t for the time evolution of two amide-I quanta, initially . i o
localized close to the chain end4499) for J = 0.967 meV, where a is the lattice constant. Then the distribution of
W=13 N/m for three values of the coupling constgrat  the random forces is

T=0K for an open chain of 200 units, with units 1 and 200

kept fixed during the simulations in the fDmodel (the time 1 R r

step size was 5 fs and & drder Runge-Kutta method was P(Fn) = oo © 23 0=2MksT— (18)
used). To

(a,b) x =20 pN (c,d)x=30pN (e,Hx = 40 pN wheret is the time step in the simtitan. The andom

forces on one hand describe the energy, the lattice obtains
from interactions with the heat bath. The friction term on the
other hand describes the energy, the lattice transfers to the
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Figure 2. The probability |g|2 (a,c,e) and the squared local heat bath. HerE is the inverse time constant of the heat bath
lattice deformation D (b,d,f) as functions of site n and time and thus an additional parameter, which is usually chosen as
t for the time evolution of two amide-l quanta, initially the lowest phonon frequency which for 200 units and stand-
localized close to the two chain ends (in equal fractions, i.eard parameters has a value of 0.2046/ps.

a,(0) = a,440) = 1/ 2) for J = 0.967 meV, W = 13 N/m and
for three values of the coupling constgrat T = 0 K for an

Our simulations indicate, that the two models behave
similar. We performed simulations with the two models for

open chain of 200 units with units 1 and 200 kept fixed duringeveral values of W ang for a one-quantum excitation of
the simulations in the |> model (the time step size was 5 fs the amide-I chain initially localized at one of the chain ends

and a 4" order Runge-Kutta method was used).

(a,b) x =50 pN (c,d)x =62 pN (e,Hx=75pN

at 300K. The results for the model with thermal lattice popu-
lation are shown in FigeB. Wesee that at 300K several
thresholds appear. The #shold x, between travelling
solitons and dispersive cases in the left part of the panel agrees
fairly well with the solid line, which represents the OK thresh-
old for soliton formation from continuum theory. Further we
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find a second threshold (lower dashed lixw)Forx >x,the  seems to be very probable. Preliminabyinitio calculations
travelling solitons are destroyed by thermal fluctuations. Sincef W point also into this direction [39]. Further Bolterauer
X, (W) intersectg, (W) there is also a threshold value for W, [10] and Cruzeiro-Hansson [36] could show, that in case of a
W,, below which no travelling solitons exist. In addition, a classical system interacting with a quantum one as in our
third threshold occurs, such that fpr> X, pinned solitary  case, the classical systerartsfers a too large amount of en-
waves occur. Physically for W > W x < x, the non-linear-  ergy to the quantum one, and thus simulations as discussed
ity is simply not strong enough to prevent the dispersion ofhould underestimate soliton stability. However, besides these
the initial excitation. Fok, < X <X, it is strong enough for encouraging findings, there are also some more basic prob-
this purpose and travelling solitons are formed. Since therlems connected mainly with the semi-classical nature of the
mal fluctuations of the lattice enter the equations for the osD,> ansatz, which we have to discuss now.
cillators in a term proportional tg, dispersion occurs again
for X, < X < Xz Then the fluctugons in x(q,,,—9,)a, are
large enough to destroy the coherent structures. Finaljy for
> X3 pinned solitons are formed due to the strong localizingThe semiclassical || ansatz, discussed so far, has a couple
effect of the non-linearity. Woccurs because famall W,  of short-comings. First of all, as Cruzeiro et al. [33,34] point
the displacements (g—q,) have to be large to accomodate a out, the state is an exact solution of the Schrédinger equation
potential energy of 0.5(N-1)K in the lattice phonons. These only if the Hamiltonian contains instead of momentum and
random displacements are then large enough to prevent tligsplacement operators for the lattice only their real values
formation of coherent structures. p,(t) and q(t), respectively. We have shown, that for the case
In conclusion, at T = 300 K solitons are only stable inof the Su-Schrieffer-Heeger Hamiltonian for polyacetylene
the |D> model if the force constant of the hydrogen bonds isa similar exact solution exists, if the momenta and
larger than roughly 30—40 N/m at reasonatdéues ofX.  displacements of the CH-units are taken as entirely classical
However, the usually used value of W = 13 N/m is measure@B6]. Further, the semi-classical ansatz for the Davydov model
in crystalline formamide, where the formamide moleculescannot reproduce the known exact solution for special cases.
can vibrate freely against each other in the potential due tfp_> yields correct solutions for the so-called decoupled case
the hydrogen bonds. In an-helix on the contrary they are (x = 0), but not for the small polaron limit (J = 0) (see [31]
bound covalently in the backbone of thetpin. Thus an for a discussion and for references). Further, Cottingham and
effective force constant being larger than the formamide-valugchweitzer [11] could show, that the complete Davydov Ham-
iltonian can be split into a part, which has a soliton g#|D
type as exact solution and a perttidoa Thus they could
compute the life-time of a [B-soliton when it is placed in
100 the physical system of the complete Hamiltonian via time-

Conceptual Deficiences

LO0000000H000000 dependent pertubation theory. They found that this type of
1 solitons, derived from the |[B ansatz (in the continuum
80 88 8 8 8 8 ::::::. model) decays into a delocalized exciton together with a set
i ‘ of phonons within a very short time. Thus one has to use an
EOT O00000O0BO0OOOXO improved ansatz, to include quantum effects in the lattice
T OCO0O000OKO000 !O o0 into the theory. In their calculations they were also able [11]
220+ O000Q002000000 to include temperature effects.
- OO0 ‘ SO0000000 However, Cruzeiro et al. [35, 36] could show that with
20+ OO0 O00 OOOOQQQ the help of the [D> ansatz one can estimate the quality of
i temperature models, because it is an exact solution of the
0 O L. O (,) O Qgg@g&gg above described reduced form of the Hamiltonian, and thus

Figure 3. Results of simulations for differendlues of W

one can apply Monte-Carlo simulation methods to this clas-
sical form of the Hamiltonian. In this way Cruzeiro [36] could

show numerically, that the Langevin method overestimates
the effects of temperature and thus life-times at finite tem-

and x for a one-quantum excitation of the amide-I chain perature as estimated with this method should be lower lim-

initially localized at one of the chain ends at 300K using thée’
model with thermal lattice population and the, ¥Dansatz.

Each circle represents a simulation performed, where an ope
circle stands for a dispersive case, a hatched one for th

its of the true life-time of solitons, however, again only for a
system which would be described by the reduced form of the
flamiltonian. Thus on the one hand, the Langevin model

Qverestimates effects of thermal fluctuations, while on the

formation of travelling solitons, a crossed open one for pinne@ther hand the |> model as such overestimates the effects

solitons, and a crossed hatched one for travelling, slowl
dispersing solitary waas. Thesolid line represents the
threshold for soliton formation from OK continuum theory.

)pf the nonlinearity, since these are again consequences of a

coupling between a classically described lattice and a quan-
tum mechanically described oscillator system. The results of
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Cottingham and Schweitzer [11] and the soluble special cases Note, that the second equality again holds only if the op-

indicate that there are significant differences between therator acts on the phonon vacuum |Gnd that in our nota-

physics as described by the full Hamiltonian and those fotion |0> = |03|0>p, where [0z is the vacuum state for the

the reduced form. Thus one has to search for an improvegimide-I oscillators (exciton vacuum). Physically, this ansatz

ansatz state. allows that amide-1 oscillators in different excitation states
can excite different numbers of phonons in the lattice ac-
cording to their excitation probability.

The Quantum Mechanical |Q> Ansatz The equations of motion for these quantities can again be
obtained with the Euler-Lagrange equations of the second

The |D> ansatz was introduced by Davydov [2, 3] for thekind [6, 14, 15, 19,22,27-30]. Note, that with the Hamilto-

inclusion of temperature effects. Unfortunately, as discusse@iian method in the form used previously by Davydov and

above, Davydov obtained incorrect equations of motion foothers, incorrect equations are obtained in case of the |D

this ansatz. However, the probably most clear insight intgtate [19]. The final equations of motion for thg>@nsatz

the origin of this ansatz can be gained, if one looks at a forareé

mally exact solution of the Schroédinger equation which can

be written in the form [16]:

ihén = _%h Z (bnkb’ak' b;kbnk) ant
k

w> = Sa,(ae> o> .
Z n()an (19) + Zh(A]([Bnk(bnk"—bnk)"'lbnklz]an_
k
where the operator in the exponential contains only _J(Dn,n+1an+1+ Dn,n-1an-)
phonon operators and time-dependent complex parameters: (23)
& = - f R, O .
S](t) Z ( bnk(t)b bnk ; kkn b b |hbnk: h(x)k(bnk"' Bnk)_ J%D n,n+(b m1k” b nb a;nl +
1 ot * P
" 39 [ Sall)BEe ~ G ) * - Dunilorai b2
an O
(20)

) i ) i where the coherent state overlaps are given by
To obtain the exact solution, all possible multi-phonon

terms (up to infinite order) would have to be included into

the operator. Thus as a first step in the improvement of ansatz 01 O

states it is quite natural to retain only the one-phonon term&nm= expﬂ- (| bk = bkl ® + bk Bini— Bk bnk)D (24)
in the expansion given above, and to neglect all multi-phonon A2 H
interactions. is leads to the |B ansatz as discussed be-

low. Mechtly and Shaw [18] have shown, that for initial con-
ditions g(0) =g, and B, (0) = 0 the small time behaviour of

Equations of Motion the system poses no difficulties due to the denominajitt)s a
in eq. (26), although if they vanish for t approaching zero

Thus the |D> ansatz fory> can be written in the form (see also [15] for details). To avoid numerical instabilities

we follow the suggestion given in [18] and glméhich van-
0. ish in the initial state are put t(@) = x, where x is a small,
D> = Zan 10> (21)  physically insignificant number, e.g. x=0.005 [18]. Then the
n initial state is renormalized to 1. In our calculations we tried
values of x between 5-£0and 5-16'° without any visible
where the coherent state operators are given by change in the dynamics obtained, at least at 0 K tempera-
ture. Thus we used always x = 0.005 in our T = 0 K
04 0 0 0 simulations. However, at 309 K (see bglow) we fpund that
0,10>,= eXpB__Z |bnk(t) f ex bnk(t) Br0>, the results converge only with decreasing X, if x is chosen
g 2 A g A much smaller, i.e. x=1-1® For the numerical solution of
the equations we used again a Runge-Kutta method, correct

A+ * A E i i i
= eXpEZ [bnk(t) By - by (1) bk]D|0>p . up to the fourth order in the size of the time step.
H
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Quality of Results for times between a few ps up to 10 ns [15]. Further we stud-
ied the very small time behaviour of; }bin comparison to a

It is now of utmost importance to find a measure which giveslaylor expansion in time of the exact solution for the Davydov

information to what extend exact dynamics are reproducetHamiltonian in our previous paper [15] and found again sat-

by the |D> ansatz. One such tool is the investigation of speisfactory agreement between them. From these results we

cial cases for which the time-dependent Schrédinger equaoncluded, that the |B ansatz recovers the exact dynamics

tion can be solved exactly [14]. One such case is the decouplefl the systems quantitatively with very small errors. Thus

one, i.e.x = 0. In this case we have just the free oscillatorone can trust results which are obtained with the help of the

system without any perturbation caused by the (also) fre¢D,> ansatz.

phonon system which is still present. The other special case

is the so-called small polaron limit, where J = 0. Here welnitial States and Applications

have an immobile amide-I excitation (vibrational exciton)

which polarizes the lattice via the exciton-phonon interac-First of all it is of utmost importance to compute initial val-

tion. It can be shown [14, 16, 18, 32], that in both cases thees b (0) from a given set of initial lattice momenta(@®

|D,> ansatz leads to a time evolution of the state which satisand distortions ({0). Unfortunately, while there exists a

fies the time-dependent Schrodinger equation, both analytianique relation to compute momenta and distortions from a

cally and also in numerical simulations [14]. given set of coherent state amplitudes, for the reverse situa-
Further, it was shown [18] inegeral that for the |>  tion this is not the case. Thus we concentrate on the exactly
state soluble special cases [32] to deduce informations on the form

of the initial state from these. Indeed this is possible: it turns
3 . out, that the initial coherent state amplitudes have to be site-
<Dy(t)l in— - AIDy(t)> = 0 (25)  independent if the |> ansatz should yield the correct solu-
ot tion. Thesite-dependence of the,!s has to evolve through
the equations of motion. Fortunately for this case a unique
holds, but relation exists [14]:

(ing-A)IDy(t)>=3 15() >

— . M(Jok
wm0)=3 4T Umen (O
18(t) >= -y {aa(DnpealB o>~ B 1) (26) b G (O (28)
n' ’
n ZhM Wk " a
a1 (Dy et B >= B s >) +
* Z[an+1(bn+lk_ bnk) Dist Note, that this holds also, if |B like ansatze should be
k o used to describe dynamics of poly-acetylene chains in the
+an_1(bn_lk - bnk) D, ,ﬂ] U b 0> ,}%1+,10> R Su-Schrieffer-Heeger model, in contrast to our previous sug-

gestion [40].
We have found that in the [P case, in contrast to 4B,
where B> = U (t) [0> is the coherent state at site n. & strong dependence of the dynamics on the initial excitation
With the help of the state vectd(t)> as given above and the Site exists. Using the usual parameter values, we found, that
R from an initial excitation at the chain end where the C=0
dimensionless stateewtor [A(t) > :(H/J) IDy(t)> we de-  group is directly coupled to the lattice solitons appear at 0K
for the usual values of the parameters. Indeed, if the amide-
| system is excited initially at that end (oscillator no. 1 in our
case) of the chain the appearance or disappearance of solitons
<yly> <y & aly> <vlbly> as function ofy i? very similar to”the cErresEondiEgzrD .
N N case. However, if we excite initially at the other chain end,
<YIPalY> <Al y> < Bol v (27)  where the C=0 group is not directly coupled to the lattice,
ly> = 10> [A> solitons are only formed if roughfy> 170 pN, a value much
too large to be reasonable. To illustrate this, we show in Fig-

These expectation values could be calculated duripg |D Ue 4 the dynamics of the amide-| excitations for these two
simulations and compared with each other. We found thaf@Ses in a chain of 51 units. In the case of an initial excita-
for all of them the expectation values invoking the deviationtion Somewhere within the chain we find solitons again only
state were orders of magnitude smaller than those Awith | &t Very large values of the coupling constant (roughly

rived expressions for the expectation values [29]
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Figure 4. The probability |g? to find an amide-l quantum

as function of site n and time t for the time evolution of one | Dy, V>= zan(t)éﬁljn |v>
amide-I quantum, initially localized gnat different chain n

ends for J =0.967 meV,W =13 N/m w60 pNatT =0 K

for an open chain of N = 51 units in the jOmodel (&' U, = expQ Z( bric(t) By, = bk (t) B )
order Runge-Kutta method with 200,000 time steps of a size B4

of 0.15 fs; x=1-1¢).

(@) =1 (b) =51 where the arbitrary distribution of quanta on the different
normal modes is given by

O

(29)

MmO

170 pN). This could be due to the shock waves in ttiieda

interacting with the wave-trains or to interactions of the two ) VK
trains with each other, after one is reflected from the chai V> = bx 10> 30
end closer to the initial excitation site. However, a possible |_| V! (30)

reason for this feature is also, that in this case from the initial

excitation site two wave trains in opposite direction are emit-

ted, and thus each of them carries only half of an amide-| Then gthgrmally averaged (over all possible distributions)
quantum. From | dynamics we know, however, that a re- Hamiltonian is formed:

duced number of quanta carried destabilizeltons. The

equations of motion for multi-quanta,fbstates are far more R

complicated than for the JB case and simulations with such H(T) = Z py(T)< Dy, VIH|Dyv >

states have not been performed so far, at least to our knowl- ny

edge. We have derived the necessary equations, but we haven't _Hy

programmed them yet. Basically the conclusion for 0 K is, V(T) — fy (T) ; fv(T) =<vle EIV > (31)
that we can expect the formation of Davydov solitons only if z fu (T)

the initial excitation occurs at one well defined chain end, m
namely that one, where the C=0 unit is coupled to the lat-

tice. Now we have to turn to the influence of temperature on

the dynamics. where H , is the phonon part of the Hamiltonian, and k

is Boltzmann'sconstant. ien from a thermally averaged
Lagrangian equations of motion for the a's and b’s are de-
rived. The resulting equations of motion are rather lengthy,

In principle we have also in this case the possibility to PopUy L given in detail in [22]. Therefore we do not repeat them

late the lattice with a thermal phonon distribution prior to here, but present the necessary ¢iqua in Appendix A
the m;;ual amr:(_je_-l excitation. HO\E)vlever, It t(;lrned out that |r; mainly because the complete derivation was never presented
ID,> theory this is not a reasonable procedure to account fQp, yhe'iterature, only the final results in [17], unfortunately

temperature effects. Davydov used an averaged Ham'lton'aéhlculated with Davydov's version of Hamilton's principle,

method which starts from an initial state containing an arl?"vvhich yields incorrect equations of motion.

trary phon_on di_stribution together with a_unitgry operator U In the literature Quantum Monte Carlo (QMC) results
of the lattice displacements (note, that in this case the W8, e payydov model with cyclic boundary conditions and
forms of a colherent state &Ils discussed above for the T = 0 Koy mmetric interaction at different temperatures can be found
case are no longer equivalent) [23]. After introducing these features into our program, we

Temperature Effects
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could perform time simulations with exactly the same physi-ized states. Thus the solitary waves found in our calculations
cal parameters. At the same temperature as Wang et al. [23t T = 300 K result from a delicate interplay between the
we found formation of solitons, and at somewhat larger temnonlinearity, which leads to localization in a coherent man-
peratures, we could reproduce a change from coherent struner, the dispersion, which tends to delocalize the excitation
tures to Anderson localized states using the averaged Hamibr makes it mobileand Anderson localization due to disor-
tonian method. Thus we conclude that this method yieldsler, originating from thermal fluctuations, which tends to
qualitatively the same results as the QMC simulations [23]lattice pinning of the excitation. In Figure 5 we show in the
However, an averaged expectation value, computed in [23ame way as above the results of our survey of the parameter
the model is not able to reproduce. Therefore we viewspace for an initial excitation at the chain end where the CO
Davydov's model as an approximation which yields qualita-group of the unit is not directly coupled to the phonon sys-
tively (soliton formation or not) the correct results, but is tem. Note that in this case we found only dispersing behav-
guantitatively not correct. The lattice population model yieldsiour up to large values of the nonlinearity at T = 0 K.
even qualitatively wrong results. In the next section we give Figure 5 indicates that again we find travelling solitons
a short description, in which way we want to overcome theonly for values of W being larger than roughly 30—40 pN and
problems associated with Davydov’s model, which can evemt reasonable values of the nonlinearity. However, now these
be critisized from a statistical mechanics point of view. solitons need not to be started from that end of the chain
In simulations it turned out to be quite important, that inwhere the C=0 group is directly coupled to the phonon sys-
the averaged Hamiltonian method a factor appears at the disem. Note, that for 300 K, solitons can be excited not only
persion terms, containing a real part which is exponentiallyfrom the terminal unit itself, but also from the unit left of the
decreasing with increasing temperature. This factor decreasésrminal one inside the chain, however, not from the second-
the dispersive character of the system: it can enhance localeft one, where two slowly dispersing waves are formed, i.e.
zation (immobile) due to disorder of the Anderson type. Thudor N = 51, solitons can be formed from units 51 and 50, but
the effective dispersion parametkis reduced with increas- not from 49. However, at T = 300K also when starting the
ing temperature. This leads to the result, that at 300 K wesimulation with an excitation at the other chain end, namely
usually obtain solitons for parameters which yield a disperfrom initial excitation sites 1 or 2 solitary waves are found,
sive behaviour at O K, while at parameter-values, where trawvhile in the centre of the chain only slowly dispersing soli-
elling solitons are found at 0 K, at 300 K mostly pinnedtary waves can be seen. In Figure 6 we display some exam-
excitations form which most probably are Anderson local-ples for such solitons and solitary waves, also for different
chain lengths. However, as Figure 6 indicates there are also
cases, where from the initial excitation first of all a slowly
dispersing solitary wave is emitted. Afterwards, the excita-
tion is accumulated again at the chain end due to Anderson
localizgtion. When, after some time the excitation probabil-
ity is large enough, again a solitary wave travels through the
chain (Figure 6d). Obviously the solitons appearing at 300 K
@ are able to pass once through the chain, no matter how long
it is, but they start to disperse after collision with the chain
@ end. An interesting feature of our model is, that the solitons
at 300 K in a system of three coupled (by transition dipole
moments of the C=0 groups) chains (as it is the case in an
a-helix) are of similar stability as in the case of one isolated
chain. In Figure 7 we show four different examples of that
I I case. Aghe Figure shows, in the three-chain case the solitons
20 40 60 80 100 (pN) have a quite complicated structure, with fractions of the
amide-1 quantum oscillating between differehtims. Thus
we can conclude, that at reasonable parameter values also at
300 K solitons are only stable if they are initiated from one
of the chain ends and its next neighbor. However, solitary

initially localized at that one of the chain ends which is notW ve like features. in som rring onlv after refl
directly coupled to the phonon system (N = 505 49), at vave fike lealures, in Some cases occurring only after retiec
tions at chain ends are found in each case.

300 K using Davydov’s averaged Hamiltonian model for the
|D,> state. Each circle represents a simulation performed,
where an open circle stands for a dispersive case, a hatched

one for the formation of travelling solitons, a crossed open/MProvements

one for pinned solitons, an open one with a point for a

localized, slowly dispersing excitation, and a crossed hatchegince the averaged Hamiltonian is only qualitatively correct,

W (N/m)

50 —

Figure 5. Results of simulations for differenélues of W
and x for a one-quantum excitation of the amide-I chain,
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Figure 6 (continued next page)The probability |g2 to find | an(t)| 2

an amide-l quantum as function of site n and time t for the (@)
time evolution of one amide-I quantum, initially localized at
different sites (y) for J = 0.967 meV, W = 30 N/m age- 20

pN at T = 300 K for an open chain of N units in Davydov’s .5
averaged Hamiltonian (|>) model for different chain
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Figure 6 (continued). guestion arises why in the infrared spectra of the amide-I
band in polypeptides [42] no unusual features were found
experimentally which could be atttited to solitons. Thus

i we computed spectra from our dynamical simulations for such
lw(t)> = ea™1y(0)> (32)  cases where solitons are formed, and others which show dis-
persive behaviour. This is necessary, in order to decide
of the Schrédinger equation in a power series in time, invhether the experimental failure to find solitons in the spec-
order to obtain exact dynamics at least for very short timdra is a proof for their absence or not. As worked out e.g. in
and to compare them with B results [15]. We found that the paper by Heller [43], from dynamic simulations one can
|D,> seems to be correct not only on larger time scales, pbutalculate directly the usual form of an absorption cross sec-
also in the range of a few tenth of a picosecond, i.e. the timdion with the help of the auto-correlation function S(p)iga
when the lattice distortion necessary to form a soliton jusBohr’s length and a the fine structure constant)
develops [15]. However, we could sum up some terms in the
expansion to infinite order in time. This should lead to a propa- ¢ .
. ; : s Oig O

gation method for thg cpmputatlon of the dynamics. .Namely,o(w) = 8rfaalw [Rel®’ S@D dt 33

one could use these infinite order terms for a small time step, { H (33)

and then use the result again as initial excitation for the next

time step, for which one could use again the infinite order

terms acting on the new initial state and so forth. Such a In principle we have here a full Fourier transfotiora

program could lead to a more straightforward method to i”(}integration over & < t < ) of ex;{iEt/h]S(t), however,
[ he theory. First of all on Id. . . ,
corporate temperature into the theory. First of all one cou since S(—t) = S(t) we can restrict the integration to a half

use similar procedures, to obtain infinite order terms for 8 ansormation of the real bart of theament. Tis holds
lattice, which is initially excited as in Davydov's averaged b 9 ' '

Hamiltonian method. However, in this case one would nohecaus&{- t) = < ¢(0) [¢(- ) >=< ¢(0)|ex;{itl:|/h] 16(0) >

need to derive equations of motion from a thermally aver-

aged Lagrangian (which as mentioned is a quite question= < ¢(t)|¢(0) > :(< o(0) 1(t) >)*: s*(1). In eq. (33) we

able procedure), but one could obtain for short time steps

and a given phonon distribution analytical wave functions.have E = E +7w , wherew is the frequency of the incident

From these one could compute expectation values of the opadiation andE; is the energy of the initial state prior to the

erators of interest (e.g. number operators for the amide-1 osmide-| excitation, i.e. in the T = 0 K case the vacuum. This

cillators, phonon operators and consequently momenta ang necessary to set the energy scale of the incident radiation

displacements). Since these expectation values would be giveorrectly. The resolution becomes the better, the longer the

also analytically, one probably could perform a thermal av-simulation timetg (which in principle should be infinite) is,

erage on them and in this way obtain reliable dynamics [15]up to which the integration is performed. We take as starting
state at T = 0 K simply our lattice with only the zero-point
vibration excited. Thus we obtain f8{t) simply

Computation of Spectra

1
As outlined in the above sections, solitons have been foun®(t) =<(t=0) ¢(t)> ; E= > Z Iy (34)
theoretically within the Davydov model atasonable pa-

rameter values and at all temperatures up to 300 K. Thus the
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Figure 7. The probability |ﬁ|2 to find an amide—I quantum Therefore

as function of site n and time t for the time evolution of one

amide—l quantum in a system of three coupled chains (first

chain: n = 1-20, second chain: n = 21-40, third chain -i—EEo%Zhka —%Zlbnk(t)lz
n = 41-60), initially localized at that end of the first chain |¢(t)>=e "8 “% E
which is not directly coupled to the phonon system for J =

0.967 meV at T = 300K using Davydov’'s aaged 3 b(1)B
Hamiltonian (|D>) model for different values of the spring [eX a o>
constant W othe hydrogen bonds and of the nonlinearity
(the next—neighbor interchain dipole coupling constant is
1.5373 meV, following Scott [1];"order Runge—Kutta
method with time steps of a size of 0.1 fs; x = 0.005 was used
here, because for the usual x = I8libie error in total energy
increases by 7 to 8 orders of magnitude, although to only t):
10° eV, after roughly 1 ps, indicating most probably numerical
difficulties with the denominators in the equations of motion).

(& W = 19N/m, ¥ = 35 pN (b) W = 20N/m, x = 62 pN

(C)W = 40N/m,x =62 pN  (d) W =60ON/m,x =62 pN  Where: (36)

(35)

and thus

itd 1 d
_EEE0+_Zhka
e hg o 2% g

1
—23 oy (t

E, is the energy of the groundstate (as mentioned, the|g (0)>=10> ; <OB,(t)>=e 22! nlf
vacuum), whiled(t=0)> is the excited initial statep([t=0)>
= ylx;> (Ix;> = [0> here ang(t=0)> =%, 3,(0)a; 0>) and,
the transition dipole moment operator between initial state i . . .
and final state f. The ecitation energy of 0.205 eV is alread sing a §|mple S'mpSO’? §cheme. In case of the ave;rgged
contained in the phase factor of the total wave function, while amlltonlan. T:eLhOd fclJIr finite tle m%eraturesl we duse? as initial
the zero point energy is includedtnto set the correct scale state one with thermally populated normal modes:
for the energy of the incident radiation.

The time integration is performed during the simulation
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Ei= h @+—@; VK= [BX 0-1
i Z WYt 5 k EeFB_DkBTD E (37)

In order to be consistent with the averaged Hamlitonian,
we form an averaged autocorrelation function with the state

(38)

Thus we have the thermally averagedrelation func-
tion

(39)

The expectation value i§t) can be easily written down
by noticing that the thermally averaged overlap between two

93

D]]:ll:l

S(t): e_%EEO+%hwk(VK )
DZ 3, (0)aq(f)exp

O
(42)

mmm

Z( 1) Io(9) F@

Note, that our phonon-states, formed with the help of the
unitary displacement operatornlﬁb are not eigenstates of
the phonon annihilation operators, whilq|(®> is. On the
contrary, such an eigenstate cannot be constructed in this
way from V>, because the basis space of oscillator states is
not complete, when starting the expansion from How-
ever, we could find a solution of the equation (without loss
of generality we give the equations just for the case of only
one oscillator)

bIB.v> = b(t)Bv> + X(t)|v-1>

ansatz:

hd 43
By>=3 o, > @)
p:

coherent states at different sites is given by ([17] and in Ap-

pendix A)
D”m(t) = z Py < Vllj:](t)o m(t)lv > =

= eXpé [(Vk + 1)b:1kbmk+ Vi i
1 il
e Ry v

(40)

which would lead after normalization to

From this our desired expectation value is obtained sim-

ply by introducing for [ the values (0) = 0 and for p,

the values jj(t) into the right hand side of the above equa-

tion. Thus

va <v|U;(o)u
—expE- z(

Q> =

) |bnk B (41)
B

and finally

IBn,v>=U0, |0>

(44)

U Sleb b* V_l|b(t)|)\ (ff)AB

| 0

= = =

with
3 e
0

R,()= e )0 -5 1OF (45)

i & "

where {) is the phase di(t): b(t)/b*(t) = exp[2(t)] and
X(t) has to be

0 nY
X(t)zéi(t:)—(_ti)!&(t) ;o ifv>l

0 0 ;

(46)
ifv=0
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For our ansatz state a similar relation holds: given for the high temperature behaviour of the amide-I band
in peptides, but the discussion given there indicates that also
at higher temperatures no unusual features are found. Also

B Un(t)lv=>=" bi(t)0,(t)1v>+ v Gy (t) v -1> ) our results (Figure 8c) show, that although there is a soliton
_ . Cae— _ present in the system, it cannot be traced in the spectrum.
v>= I_Il Vie> [V ol>E Hl Vie 70k Thus, even when Davydov solitons of the conventional type
K “ (amide-lI mode coupled to acoustical phonons) are formed in
the system under investigation (as in Figure 8b,c,d), they
where eachv|> represents the occupation of the normal cannot be observed by the usual spectroscopic methods.
mode k. Therefore, thexgerimental finding that the amide-I band in
Examples of the calculated spectra are shown in Figurgoteins shows no unusual features [42] cannot be used as a
8. As itis to be expected, solitons cannot be seen in the spegroof for the absence of Davydov solitons in the system. Thus
traat T = 0 K, because the Frank-Condon factor between aghe has to search for other experimental tools to detect solitons
excitonic and a solitonic state for acoustical phonons in th%xperimentally, e.g. the pump-probe experiments as suggested
Davydov model for proteins is extremely small (see [1] for apy Knox et al. [44].
discussion). Only we observe that for larger nonlinearities, * However, the centre of the band is always shifted propor-
(Figure 8a) the fine structure of the amide-I band is morgjpnga| to the nonlinearity factoy. In Figure 8b at 0 K foy =
complicated than for free dispersion (notwhp When a g pN this shift amounts to approximately 8&niProbably,
soliton is formed, the band becomes a little bit more strucysing well-deined a—helical samples such a shift could be
tured (Figure 8b) than in the case of nearly free dispersion;seq to obtain an experimental measurg,oélthough the
Furthermore a very small shoulder appears on the higher egitt is quite small and might become undetectable when the
ergy side of the amide-I band, which is absent at higher tensand broadens at high temperatures. Note, that negative val-
peratures, but increases in intensity with increasingyes of the intensities in the spectra indicate, that the total
nonlinearity. At present we are not able to give a clear physigimylation time is not completely sufficient, or that some

cal explanation for this feature. However, this shoulder isjamping factor should be included in the exponential factor
probably far too small in intensity to be observable. In CONmultiplied with St) in the integrand.

clusion, this observation fits to experiments on oligo-peptides  ag Figure 8d and e show, the amide-l band becomes

[42] at low temperatures, where no special features in thgpjitted, when the initial excitation is not placed at the termi-
spectra of the amide-I region were found, which might bepg| sjte, but in its neighborhood. This phenomenon occurs

attributable to solitons. Unfortunately in [42] no details arepere in systems where solitons are present. Further, the same

n I (b)

45

35

Figure 8 (continued next page).



J. Mol. Model.1997, 3 95

" (@) ﬂ (c) ) @ | (d)

Figure 8 (continued). Absorption cross sectionsay

(e) calculated from |> simulations at T = OK (a, b) and 300 K
(c, d, e) in arbitrary units [I) = o(w)/(8Paa,?) is plotted,

see text] as functions of the energy of the incident radiation

o u for chains of 51 units {ris the initial excitation site) and

N the following parameter values{drder Runge-Kutta method

with 200000 time steps of a size of 0.15 fs; x =$10
(@ W=13N/m,x=20pN, =1
(b) W=13N/m,x =60 pN, g =1

100

= ()

" E

R (©)W=30N/mxy=20pN, =1
(d) W =30N/m,x =20 pN, g =2
“E () W=30N/my=20pN, =3

20 |
than the normal amide-l band as measured with conventional

uf vibrational spectroscopy. This broadening in the latter case
W V\/\’\/"V" might probably be due to couplings which are not present in

' our model. However, a further difficulty is, that such splittings
uwk hoo(eV) and the corresponding solitary waves can only be obtained

sttt from localized initial excitations, while the irradiation for
oo = " the determination of spectra usually excites just normal
modes, which are delocalized. However, to get a clear in-
sight, let us investigate such initial excitations more in de-
behaviour occurs when the inital excitation is placed at thdail. Namely, the Hamiltonian of the decoupled amide-I sys-
other end of the chain, namely the farther the initial excitatem
tion site is away from the respective chain end, the more
bands show up. This feature is due to the fact, that the initial. _
excitations probe different combinations of normal modes ofHe™
the amide-1 chain. One could think that this feature might be
an experimental probe for the existence of Davydov solitons (48)
in proteins. Already in Figure 8he peak is much smaller Xom= Smns1~ 8 )t & makl=3

3y (e * aa) =-da'Xa
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can be brought into diagonal form via pletely independent of the initial excitation site, as one has
to expect for the case of periodic boundary conditions. How-
ever, for a finite open chain the situation is different.
= &5 ek Tekdkk As mentioned already, it is difficult to excite just one site
in a chain by a laser pulse. Thus we want next to examine the
. o AW (49)  dynamics of an initially excited normal mode of the dipole-
He= —J Zﬁk de di: d=Wa coupled system of free oscillators and the resulting spectra.
In Figure 9 a-d the dynamics resulting from an initial excita-
tion of the normal mode no. 5 (humbered in increasing order
Then we can write our initial excitation (at sitg im the of eigenvalues) of the free amide-1 oscillator system at T =0 K

IS
[

w

form and T =300 K are shown. Obviously, the different peaks in
— Table 1. Normal mode (of the amide-I oscillator system with
0)>= 0>= d d; | 0> , . . ;
|¢( ) Z a ! z k @ | dipole coupling only) occupancies (t= 0)| for a chain of

51 units (J = 0.967 meV) for different wave numbers k of the
(50) . . . : L
amide-l system (dipole coupling only) and different initial
excitation sites p(all other sites are unexcited in the
respective initial states). Note that due to symmetry
Therefore we can compute the initial occupation of theld,g (t = 0)]?= |d,g,,(t = O)]? holds.
normal modes, |@)P, for different initial excitation sites
N, The results are shown in Table 1 (note, that in the course
of the simulation, these modes become coupled via the K ng=1 =2 ny=3
nonlinearity). From the Table it is obvious, that fgrrl we

2,(0)=3,,  dy :ankan(O:
n

probe just one set of normal modes around the centre of the 1 0.0001 0.0006 0.0012
band, resulting in one line in the spectrum. For 12 we 2 0.0006 0.0022 0.0048
already excite tvvp sets of normal modes aroun_d the F:entre of 3 0.0012 0.0048 0.0103
the complete amide-I band, which itself has no intensity. Thus
we obtain a splitting into two bands. Fqy=n3 we already 4 0.0022 0.0083 0.0169
have three sets of normal modes initially occupied, leading 5 0.0034 0.0124 0.0238
to three lines in the spectrum, and so forth. 6 0.0048 0.0169 0.0302
. _In case_of a pomplete Q|sper5|on, i.e. |deally .Wlth a van- 7 0.0065 0.0215 0.0351
ishing nonlinearity and periodic boundary conditions such a
splitting of bands does not occur. This is most easily seen, if 8 0.0083 0.0261 0.0379
we insert the exact wave function [eq. (C12) in [14]] of a 9 0.0103 0.0302 0.0383
decoupled oscillator system with one-site initial excitation, 10 0.0124 0.0336 0.0363
together with its phase factor (periodic boundary conditions), 11 0.0146 0.0363 0.0320
into equation (35) and (34) for the absorption cross section. ' ' '
The zero point energy of the lattice cancels out, and the cross 12 0.0169 0.0379 0.0261
section is 13 0.0192 0.0385 0.0192
14 0.0215 0.0379 0.0124
15 0.0238 0.0363 0.0065
aaoco Ky i(-@ X
0( zR g , dtD: 16 0.0261 0.0336 0.0022
17 0.0282 0.0302 0.0001
_ 4raadw °° (@) stia ao 18 0.0302 0.0261 0.0006
= Z Je dt= ‘*’Z ©-) 19 0.0320 0.0215 0.0034
B 20 0.0336 0.0169 0.0083
(1) 21 0.0351 00124  0.0146
— 10 i 22 0.0363 0.0083 0.0215
Wy =—[§g—2Jco k
hQ N 23 0.0372 0.0048 0.0282
24 0.0379 0.0022 0.0336
(for cyclic boundary conditions). Thus the spectrum ofa 25 0.0383 0.0006 0.0372
freely dispersing one-site initial excitation would be just a 26 0.0385 0.0000 0.0385

very dense superposition of delta-function peaks and com-
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the |gf? distribution of the normal mode become coupled toformation of a solitary wave from a quasi-random background
the lattice and break up into distinct pinned solitons, as thenly after longetimes. Thespectra show more or less the
|lattice displacements at T = 0 K show. At T = 300 K the samesame features as for th& Bode. The conclusion from these
phenomenon occurs, however, due to thermal fluctuationsalculations is, that also from initial normal mode excitations
the localization becomes enhanced (Anderson localizatiosolitary waves can be formed and that they do not give rise to
in addition to nonlinear localization) and consequently thespecial features in the spectra. However, thermal broadening
number of pinned solitary waves formed equals now theobviously is able to make any fine structures invisible. This
number of maxima in then|%1distributi0n of the mode. Fig- is not obvious from our former single-site excitation spectra,
ure 10 a,b display the spectra as calculated from these dpecause there a smaller number of phonons becomes active.
namics. Thespectra show clearly, that not only the normal Finally, let us assume, that we have a sample containing
mode, which is excited initially, shows up (the line with the completely regular alpha helical segments with identical
largest intensity) in the spectrum but it is mixed through theamino acid residues. If such a sample could be synthesized
nonlinear coupling with other ones. At T = 300 K (Figure at all, one could also think about a measurement of initial
10b), the normal mode structure of the spectrum is now supeone-site excitations by irradiation with a monochromatic la-
imposed on a broad quasi-continuum due to the latticeser pulse at 0.205 eV (1653.56 @nAssume that we could
phonons. The solitons formed from the normal mode excitairadiate within a short, well defined time, which would lead
tion do not result in special features in the spectra. In Fig 9 @0 a broadening of the pulse in frequency space according to
h the corresponding dynamics after an initial excitation ofthe time the pulse lasts, as given by the Fourier analysis of
one of the higher normal modes (49) are displayed and isuch a pulse. Let us look at such an irradiation with the time
Figure 10 c,d the corresponding spectra. Due to the fact, thdependent electric fieldi(being real)

this normal mode has a large number of nodes, we observe

Wit

)"

il
AT

Figure 9 (continuous next page).



98 J. Mol. Model.1997,3

el

\& ¥‘
I

A A\
(7 .\\\gt\\\\\‘
N

w"‘ " TIME t (ps)
i Ay . o) @
i ““‘\“‘"l\\\\i\\\ﬂ\»\“i Al o A
; xw«.«a‘i«\i\yﬂ!?{\\\";\’~;<\g::“\\\\\\\\\\\ M i
Wi AL
AriEatiss . . Pt ol Tl g B
e 20 \\\“\ nuo 'al'olulz/IEt(ps) SITE “ TIME £ (ps)
SITEn ) N g

Figure 9. The probability |ﬁ\|2 (a, c, e, g) and the squared (w, denotes the frequency of the incident monoclatien
local lattice deformation P(b, d, f, h) as functions of site n pulse):

and time t for the time evolution of one amide-I quantum,

initially excited in form of one normal mode k (numbering

according to increasing energy) of the decoupled oscillator 1% . .

system for J = 0.967 meV, W = 13 N/m g 60 pN for two E((;J) = > EOJ’(éwot + gl ) Oer” @« de

values of k and different temperatures, T = 0 K and 300 K, in Zoo

an open chain of 51 units, using the YDansatz and the [ , o , O

averaged Hamiltonian model (the time step size was 1.5 fs,= E, cos(colt)e‘“r dt+‘[ co@,gzt)e‘“r dti=

the number of steps was 4,000,000 and"a#ler Runge- a:

Kutta method was used; x = 1-80 O (emred? o2 ©3
(a,b) K=5T=0K (c,d) K=5,T=300K 1 [m (20 —(“""”)D
(m =X +w):— —ES; 40+ @ Ao
(e,f) K=49, T=0K (g, h) K=49,T=2300K 12 = Wot W) ==y —Eo 0
B B
E(t) = E, [tog{wot) & = With the help of this well-known relation it might be pos-

(52) sible to create a pulse, with a frequency distribution which is
close in form to that one for a one-site excitation as given in
Table 1. To simulate such a situation, we created a Gaussian

packet of normal modes around its cengr R6 (w,= 0.205
Then its Fourier transformation can be rewritten, usingey):

Euler's formula, and considering even (sine) and odd (co- s .
sine) functions (with respect to time) in the integrands, to a 5 (c=) (@)
sum of two Fourier cosine- transformations of the Gaussiardx (t = 0)| =af, ; fy=e % +e

= % |zo(é°°°t - giod ) De’
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Figure 10. Absorption cross sectionsal calculated from that the artificial negative peaks in the spectra are here

the |D;> simulations shown in Figure 9 in arbitrary units somewhat larger than in Fig. 8, because we use a larger step
[I(w) = o(w)/(8Paay?) is plotted, see text] as functions of size in the numerical time integration (Simpson method) than
the energy of the incident radiation U for chains of 51 unitsthere.

(k is the initially excited normal mode of the decoupled(a) K=5,T=0K (b) K=5,T =300 K

oscillator system; # order Runge-Kutta method with (c) K=49, T=0K (d) K=49, T =300K

4,000,000 time steps of a size of 1.5 fs; x = F)10lote,
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This normalized distribution results in an appnoate
initial excitation at site 1. In Figure 11 we show a compari-

J. Mol. Model.1997,3

Figure 11. Comparison between a Gaussian packet (solid

lines) of normal modes from eq. (54) and the correct

distribution for initial excitation g= 1 from eq. (50) (Table

1, dashed lines) as functions of the eigendeerg of the

normal modes of the decoupled oscillator system relative to

0.205 eV (open chain, 51 units, J = 0.967 meV):

(@) |d(t=0)>

(b) d(t=0)=|d(t=0) (in case of the Gaussian packet
only the square root of (a) can be taken; solid line) and
d(t=0)= Wl,k according to eq. (50) (dashed line).

(c) |a,(t=0)[?as resulting from the two distributions given
in (b).

son between the Gaussian pulse and the one from Table 1 for
n,= 1. Itis obvious, that the squares are very similar in both
cases. However, from the Gaussian pulse we can only obtain
the simple square roots to get thgt & 0), and thus we do

not reproduce the oscillatory feature on the low energy side
of the exact distribution, which leads to an initial excitation
which is localized mainly at site n = 1, but has in addition
some small contributions at other sites also. The width of
such a Gaussian pulse (with a monochromatic irradiation at
0.205 eV), representing approximately an initial excitation
at site g=1, in frequency space corresponds roughly to (from
Table 1) 11.03 cm, and thus to an irradiation timeb@ut

0.95 ps) which can be computed from the Fourier analysis of
the form of the pulse as a function of time. The width can be
estimated viaZfk = 13 here)
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Further the intensity of the irradiation should be small enough

Aw = Elgko ~€ -kl X"IX=¢ that only one-photon absorptions occur.
h - T As we have discussed above, the initial excitation which
€k = €0k (55) could be obtained from a laser pulse (see Figure 11) does not

represent a clean one-site excitation. On the contrary about
40% of the excitation would be distributed onto other sites
also. Thus weerformed simulations with exactly the initial

If such an experiment could be done at all nowadays igxcitation from Figure 11 at different temperatures and cal-
very questionable, because of (a) the well defined samplegulated the corresponding spectra. Figure 12 shows the time
necessary, (b) the also well defined irradiation to excite ini-evolution of such a Gaussian packet of normal modes as ini-
tially a defined packet of normal modes, within a small en-tial excitation and Figure 13 the corresponding spectra. Ob-
ergy spacing of about +2 meV arouggF 0.205 eV and (c) viously, the deviations from a one-site excitation gt 11,
the resolution which is necessary to measure e.g. distingvhich would be unavoidable in a real experimental setting,
absorbtion peaks of such small widths and seperations, to head to dynamics which are considerably different from those
able to distinguish between a soliton signal and the converpbtained from a clean one-site excitation.
tional amide-I band. Furthermore, such a hypothetical ex- From Figure 12a and b it is obvious, that from the initial
periment would have to be carried out at a temperature a@xcitation a solitary is formed at 0 K, which is able to travel
low as possible, to avoid any kind of thermal broadening ofseveral times through the chain, followed by its stabilizing
spectral lines on one hand, and to exclude a thermal excitdattice distortion (b). From the excitation at the other chain
tion of other vibrations in the system, not included in theend, a dispersing wave train is formed. The spectrum (Figure
model, which might couple to amide-l on the other hand.13a) shows clearly, that all the normal modes of the chain

Jon = ‘3[5 ri,rH-l(l_ 9 nN) +0 r+1(1‘ g ri)]
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Figure 12 (continued next page).
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Figure 12. The probability |g|? (a, ¢, e) and the squared occurs. For this case one would need the excitation e.g. of
local lattice deformation P (b, d, f) as functions of site n two close-by frequencies with a well defined packet of nor-
and time t for the time evolution of the Gaussian packet ofmal modes around them. The time, the two lasers would have
normal modes shown in Figure 11 for J = 0.967 meV, W = 3Qo irradiate the chain in order to create a one-site excitation
N/m andy = 20 pN for three different temperatures, T = 0 K, at its second site could be determined again from the Fourier
150 K and 300 K, in an open chain of 51 units, using theanalysis of a pulse with defined frequency, lasting for a finite
|D,> ansatz and the averaged Hamiltonian model (withtime, such that each of the two pulses creates one of the two
400,000 time steps of a size of 0.15 fs anl arder Runge- normal mode distributions as given e.g. in Table 1 for 2.
Kutta method; x=1-16). The chain lengths would have to be large enough, that the
(a,b) T=0K (c,d) T=150K (e, ) T=300 K normal mode distribution for the creation of an excitation at
a terminal site is not much influenced by small variations of
the chain lengths in the sample. However, in our case the

become excited via the nonlinear coupling and give a signdrequencies of the two lasers would have to be 1642.58 cm
in the band, which is much more complicated than the spednd 1664.59 cr, and the widths in frequency space have to
tra of the clean one-site excitations (FigByeAt 150 K (Fig-  be roughly 3.195 crt. The problem is, that as discussed
ure 12 c,d) the solitary wave started from site 1 is repelled@bove laser pulses are not able to give a one-site excitation
when it hits the wave train coming from the other chain encflean enough to produce the features discussed in the spec-
in the middle of the tin. After some oscillation the two tra. Therefore, such a possibility for soliton detection most
features merge to a very broad, localized and pinned excit@robably is not a realistic one. In Appendix B we discuss
tion. This behaviour gives rise to an asymmetry of the ban@®ne-site excitatons in open chains without nonlinearity, to be
in the spectrum (Figure 13b), which is now more dense on it§ure, whether or not the band splittings occurring in the spectra
lower energy side. Finally, at 300 K (Figure 12 e,f), the ini-(Figure 8) are a trace of soliton formation. Indeed, band
tially formed solitary wave again becomes repelled by thesplittings also occur in the spectra formed from free disper-
wave train from the other side of the chain. However, it seem§ion in the open chain.
that at roughly 30 ps the two features merge to a solitary
wave, traveling just once to the chain end. Afterwards the
exciation breaks up in several distinct, localized and pinne€onclusions
features of very small amplitude. The absorption band (Fig-
ure 13c) seems now to be somewhat smaller, but still has &s next steps in our investigations we want to perform com-
complicated structure, however, a very simple overall shapeyutations of this kind with a |B like model for acetanilide
which anyway is what could be measured. Thus it seems th&ACN) where the spectra of the amide-I vibration are avail-
it is impossible to obtain one-site excitations from laser pulsegble in a wide range of temperatures [42]. Thus calculations
which are clean enough to give the regular spectral featurex this kind can be used for a direct check of theoretical models
which we discussed above. Moreover, the strong dependenagainst experiment. In ACN Frank-Condon factors are larger
of the results on the initial excitation suggests that we deahan in proteins, because in the former case the C=0 oscilla-
here with a system showing chaotic behaviour, as mostors are coupled to optical phonons, rather than to acoustical
nonlinear systems do. This possibility will be the subject ofones as in proteins. Further we apply in the moment qur [D
future studies. equations for more than one quantum of amide-I vibration to
To obtain a clearcut distinction, whether or not solitonssee, whether also in the fbcase solitons become more sta-
are formed one could also think of a situation where a splithle when the number of quanta they carry increases or not.
ting of the amide-I band into two or three very close peaks
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Figure 13. Absorption cross sectionsa) calculated from
= Z | the |D,> simulations shown in Figure 12 in arbitrary units
= r (@) (C) [I(w) = o(w)/(8Faa,?) is plotted, see text] as functions of
200 : the energy of the incident radiatigno for chains of 51 units
100 (4" order Runge-Kutta method with 400,000 time steps of a
w b size of 0.15 fs; x = 1-1¥).
m-é @T=0K (b) T =150 K (c) T=300 K
120 ;
m-§ a high accuracy, at least at 0 K. Further, our comparisons
. with QMC results indicate that also the average Hamiltonian
. : method of Davydov for the inclusion of temperature effects
¥ into the model yields at least qualitatively correct results.
vr We could show, that within this model at 300 K Davydov
= [ solitons can be formed at reasonable values of the param-
o ke eters, however, in contrast to the T = 0 K case, not only from
» initial states where the amide-I excitation is localized at the
chain end with a C=0 group involved in the coupling to the
- lattice, but also for initial excitations at the other chain end.
el Only from ecitations inside the chain solitons cannot be

1o e a0 o mw oz e formed. Whether this criterion is fulfilled in native proteins
is still an open question. Earlier discussions indicate, that at
least for actine [45] the ATP binding site is not directly at-
As Barthes [42] points out, it is of importance, to Coupletached to a helical segment, but to a random coil structured
sequence of the protein. The energy released, could be stored

not only the amide-| vibration to the lattice phonons, but; : L :
also vibrations which are of N-H type, because in the regior” Anderson localized vibrational amide-| states due to the

of N-H vibrations the spectra of proteins show anomalous""periqdiCity_Of a random coll region. Because of the dispr—
features (thus in this case one would need probably coupling]er' dispersion would not occur probably. Then by a hopping

of the amide-II vibration to optical phonons). Our basic con- echanism, the energy packet could move as a whole be-

clusion from the above discussed results is first of all thaeFween states which are localized on different sites, until it is

with the |> ansatz we have a state at hand with which wi inally injected into am—helical segment. Thus it seems that

are able to describe the dynamics of the Davydov model witf} might well be possible, that the injection of the energy
I y ! vydev w released by ATP hydrgdis into ana-helix occurs at well
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defined terminal sites of the segment. However, one needk2.

more structural details of the structure of such proteins to

decide, whether this is the case. Finally, our investigationd3.

suggest a chaotic behaviour of the Davydov model system,

which will be subject of future work. 14.
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Appendix A: Derivation of Davydov’s Averaged Hamiltonian Method

Cruzeiro et al. [15] have given parts of the derivations necessary for this method. However, their derivation contains the
Hamlitonian method as it was used by Davydov [2-3]. Skrinjar et al. [19] have shown, that in this case the choice of canoni
cally conjugated momenta is not unique (see main text) and the derivation therefore yields incorrect equations of motion. Th
correct equations were given by us previously [22], however, without details of the derivation. Thus we want to describe in thi
Appendix for the first time the main steps of this procedure. As mentioned in the main textloDatarted from the
following ansatz-state:

~ 4+ \Vk
. b
|D1,v>:2an(t)a;|0>|gn,v> D Boyv>=U(Ylv> |v>:|_|(k) 10>, (A1)

0 koAVi!

where |03 denotes the exciton and |dthe phonon vacuum. Note that in the product over normal modes k the translational
mode has to be excluded. The unitary displacement operator is given by

N R e aa \U 01 O .0 0O . a0
Un(t) = expé (bnk(t)bi - bnk(t)bk)D: expl 2 Z I () fmexpé by () | Oexps Z B( ) RO (A2)
= B B B B =
where the second equality follows from the first one with the help of the Hausdorff formula:
Lo

B2 & | G:[AAAF (A3)
which holds in this form if the commutator ¢ is any complex number, but not an operator. Thus we can write

U,=e" ; O=ev=¢em 0 UU=ehnd=erh=1i (A4)
Thus we have

<B VB v >=<v' U0 (Ylv>=<viv>=35,, (A5)

as mentioned in the main text we know further

Blen’V>: bnk'Bn’V>+’\,Vk| Bn’ V_1k>

A A A6
”3niv_1k>EUn|V_1k>:Un|_||Vk‘_6k'k> ( )
K

This equation can be most easily derived by Taylor expansion of the exponentials in the coherent displacement operat
with the help of

b,(b:) = (bi) B+ v(b;)v‘la . (A7)
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which is easily proven by complete induction. Since a phonon annihilation operator for a given wave number k commutes

with any phonon operator for another wave number k’, we can restrict our considerations to that term of the product over wav
numbers in the coherent state with the same wave number as our annihilation operator:

1 o
o~ _—|bnk|z v A A VD * A
- ki (6) Aebub
b By, v>=e ? ﬁbk(bk) ée vy >
0

1
b, F|:|°° Vo, R Vo 40 e A ~ (A8)
=e2 " DE VL:((bl:r)vbk‘F Z%(b;)v Ee WAy > =0, by [v>+ 1, Uy v >
= ' V= :

which leads directly to eq. (A6).
Now we are in the position to compute expectation values of the phonon operators using

<BnVIBnv>=1
<Bn VBV -1 >=<v (W (t)v-1,>=<vv-1,>

=r|<vk-|\)k-—6k.k>=<vk|vk—1>!_|<<vK|\)K>:0 (A9)
K 7

as

<B o VIBIBY> = bu<ByVIBLV> * JVi< By VI By V-L> = b

(A10)
< anV|6+k|l3n!V> = bnk

The second equality holds because a phonon creation operator acts on a bra-state like an annihilator on a ket-state. In t
same way we obtain

<Bn1V|6T<E)k|anV> = |bnk|2< anV|Bn1V>+ b;k\lvk <Bn’V|Bn’V_lk> +
All
+bnk\/v_k<Bn!V_1k|Bn1V>+ Vk< Bn v_]-kl Bn V_1k> = | bnk|2 + Vk ( )

As next step we need

e fy = (a( - thk) &nb

1 T+ + o
—Eglbﬂklz > bl = badb

e thet v>=(R- p)Bav>e

(A12)
:bnlen,V> +\/V_k |Bniv_lk> :\/V_k B niv_]-k>

Now we are in the position to compute the time derivative of a unitary displacement operator acting on an arbitrary
distribution of phonons:
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0.1 d b -S b O
a d E > ol Zb]kll me'l 1 .
E a—% e HV>— EZ(Qka mkhk)an’V>+
0 0 k
Z|h1k Y i, = b
b.brIB..v>-F b Eka Oer e v>=
z nk ™~k Bn Z nk IQ | (Al3)
= Z E’E bnkb;k + bnank) + bnkAHlEm!V > - Z E%k\/V_k IBn.v—1>
and the corresponding expectation value is therefore
Q- _ 1 . x
<BuvIZ-IBv> = —EZ(bnkbﬁk’f bk bne) < By VI By V> +
(A14)

+ ank <Bn'V|6E IBy.v>-— Z b;k\/v_k <Bp:VIB,V -1 >=%Z(bnk5nk_ bnk.E)nD

where the arrow at the time derivative indicates that it acts on the ket (an arrow in the other direction means action on th
bra). From this follows

9" 0 0" O Ief o
<Bo VIS IByv> = B,V SR, v = _EZ(bnkbnk_hﬁkbnk) (A15)

and with the definition

<¢|%—;|¢> = <¢|%—;|¢> —<¢|aa—;|¢> =<0 ¢> < ¢ (A16)
we can write

h 0 _ in - o

E<Bn'V|E|Bn-V> = EZ(bnkbnk_bnkbnk) (A17)

Now we can compute the Lagrangian for our ansatz state (Al):

L, =Ly~ Hy
in_ R
Ly = 2 D17V| |D1: ; Hy = <DyVIH|DyV> (AL8)
using
e<0| é—mé-+n|0>e = 5mn
(A19)

Dmn(V) = <ByVIByV>: Dm(v) =1
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we can calculate

A 9~
<Dy VIS DLy >=< DV1 Y 010> IBy V> +< Doy and 10> 3 1Bv> =

C " (A20)
z anant Z (i = B L2 2
nk
and thus
t = E a_H = E S A — A E S — - 2
Ly = < Du V| P | Dy, v > > Z(anan an an) S %(bnkbnk khkbnk)lanl (A21)
Davydov's idea is now, to form a thermal average
L(T): T) H va Ltv_zpv(T)H)
f T 0 H 0
pv(T) = L o, (T) <v |expB—k—E|V >
> (M) B keTH
m (A22)
rer 1
A =S Bo*b +—@
p Z kEPKPR ™S
where k is Boltzmann’s constant. From this we obtain
fo(T) = |_| <Vl exnjr %Vk (A23)
k
For the moment we can drop the index k and calculate only one factor of the product:
0 )
: w%—“%a
<v|expg——§) b+ % veze Xl cyle kBT v>= e2kB Z <v|(6+6)“ lv>=
0 O
e gfﬂg - (A24)
=g T B vh <ylv>= exp @/ =
u! 2tH

u:
since

b*blv>=+v b |v-1>=v|v> O (E) ) [v>=vH|v> (A25)
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Therefore we obtain for the product

ho, [ 10 E D
H’k 2% ZkBTEEEk

mk EE A26
Eﬁ (A26)

I_l exp|j—

and thus we can cancel the factors containing the zero-point vibrations from our weight factor:

(A27)

0
expE— z% kE
pu(M=—— -

where the summation symbol indicates that egckk = 1 to N-1, translational mode excluded) has to be summed

independently from O to infinity.
Note that our expression foy'ldoes not depend on and therefore

= zpv(T)Ltv = L‘va = ' since ZpV(T) =1 (A28)
\ \Y \Y
where L'=L ' (A21). Thus our Lagrangian becomes
LT)= - H(T) H(T):ZPV(T)W (A29)

and the Euler-Lagrange equations of the second kind for our unknown parameters are:

daL'_aLt | oH(T
+ ()=0 (A30)

doyr) _ar) _ : {x} = {anbnd O dtox; ox;  0xg

dt 9% dxq

becauseH(T) does not depend on the time derivatives. Note, that exactly at this point the critiques set in, because ir
principle one would have to compute the dynamics of the ansatz states for awy},sfetrfn expectation values and then
perform the thermal average on these expectation values, e.g. the probability to find an amide-I quantum gfwite n, P

should be computed as
10, (t)>=IDs(t)v> dob, oL, _g . P.v)=<¢,(018:8,19,()> ; R(T)=Y p(T)R(V)
v 1\')» ) dt aX; ax* ' n Y n \Y ! n Z v n (A31)

q

Since that procedure cannot be performed, Davydov suggested to form the thermal average already on the Lagrangian

an approximation.
The differentiations of Lare trivial and yield the following equations of motion

1 . -\ B oH(T
—in Dan + Eg(bnkbnk_khkbnk)an E-'- a;) =0
OH(T (A32)
—in ankla f+ = bnk(anan+anan)ﬁ ab(;k) =0
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Thus as next step we have to compute the expectation value of the Hamiltonian and subsequently its thermal average. F
this purpose we calculate first the overlapg,®) of two coherent states

At A

Dom(V) = <ByVIBy V> = <M §L0nlv> (A33)

With the help of Hausdorff’s theorem the two coherent displacement operators can be rewritten to

. —%ZIbmkz Y brbic =Y bche
U,=e °F erx

ek
m

Al %zlbnkz > bwbe =Y bk (A34)
U, =e"« ex ek

which yields

. A - 1
> brbx Z(bnk_l%k)ht =Y Bkh 5> Ibric P~ b f

Dnm(\)):ynm<v|ek ek ek |V> v Yom = ék( ) (A35)

Applying again Hausdorff’'s theorem in the form
e’ = B @b gb (A36)

yields
zanm‘ bi _Z a;m. h(
Dnm(v): Dnm(O)BnW(V) ; B nn(v) =< Vlek - ek k |V > amk = t:?nk_ k?1k

_ , 1 e (A37)
Dan—EXpD nbm -5 |bnr+ |bm:f
=05 B at Pl
The desired quantity is
Dyn(T) = Do) > o0 (T) Hv) (A38)

The factors occurring can be rewritten to

Bn(v) = [ < vide™ % &€ P, > =[] B v )

k k

o(1)= [ =] ay =%
k

Bnm, k(v k) e_Uka (A39)
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Since we are faced with a product of independent factors, we can drop the indices n, m and k from now on and comput

[

Z B,e

A=l . B, =<v|e® by >

Z - (A40)
u=0

Expansion of the exponentials yields

Z oL *)K<V|( 6°) B |v> ;B v>=

olk!

- K)! ’
- (A41)
<v|( ) f S<v- 0le(o,v) ; @(u,v):élo 0::;

Thus we have

Q

v (-1a? v —1ap)’
<v-0olv-k>=8,, 0O B":;((clyji)lz)z\%!oﬁ:(;gw ; Qw:(l%ll)@ﬁ (A42)

Therefore our final quantity A consists of the ratio of two infinite summations:
A:é : x:Za’e‘“V : s:Ze‘“" : &Z Yy ; 0< g €<1; sincea>0
V= V=

S:i:(l—e_a)_l (A43)

The last equlity holds because S is a simple geometric series. Assuming X to be absolutely convergent, we can rearrange

X= Z B, e Z Zqu €% = Qoo +(Qor+ Q1) €% +(Qp* Q15+ Q ) 4=
=Y Qpe ™ +e° Y 0, W+ 62§ a,, &4 =
\; ov le 1v VZZ 2v

(A44)

(o] 0 (o] [ee] 0
— —Ha S Ny 520 SHa —pa
= ZQOue +€ ZQLwle + € Z Q,pip 8%+ = Z Z vty €
u=0 pu=0 u=0 v=0 u=0
and obtain finally

—| | +vQ 2 x¥ & u+vQd
X=3 e HJ e =y Xy %
2.0 vO 0 vO

(A45)
xs—|a|2e‘“ ;X = ‘V“( 1) e ;Y=
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Now one can prove by complete induction that

v ZEJ vau ) dyvv “Zyu (A46)

holds. Since y is smaller than 1, the geometric series and all its derivatives with respect to y are absolutely convergent, ar
differentiation and summation can be interchanged, what is necessary for the steps of the prove. The geometric series can
performed and the result differentiated:

+vO d¥ < d’ -
\% 1 u 1 ( y)l

= 1-
ZEJ Y dy AT dy"

b d’ -1 A —(v)
ecause W(l y) = vi(1-y)

(A47)

with the help of this result we can reduce the second summatiorv doethe Talor series for an exponential which
converges absolutely with infinite radius of convergence:

_lale 0 2 -1 (A48)
x__-lafer |a|2 Csst A X gl B er v=(& 1)
1-y 1-e® €&'-1 1-y 8 e -10

As next step we want to show what is the meaning of v, which we simply have defined in eq. (A48). For this purpose we
want to calculate the thermal average of the number of phonons in normal mpdasing eq. (A27) in product form:

- 0 hw, O 0 & 0 hw, 2
D Vieexpr s v 0 ) expr —Sved
Vv, =0 B . _ V=0 B -
vk=kapV(T)= — o W = — =1
- O hw, 0O -¢ 0 nw, 07 (A49)
Zexpcrk TukD 0 expT 1 < Hy [
=0 8 ud=o 0O "B 05
Dropping again the indices for a while, we obtain
) © ) (v 1)a 00 © 0 e O
ve'® ¥y ve' ve v+1 va ver+ ) ¥ ve¥® O
— VZI - vzzl —- vzzl — Z - VZO \;) _e—a v=0 0
- [ - 00 - [ - - [ - D 00 +1J:|
Z e—pa eor Z e—ua ea Z e—pa eu Z e—ua ea Z e—pcx EZ e—pu B
H=0 n=0 n=0 =0 u=0 Bi=0 g (A50)
- e“ 1
O v=ze%v+1) O -
(v+1) 1-¢¢ é&-1

This makes clear that the quantitity v as defined above is nothing else than the thermal average of the initial occupatiol
numbers (incoherent) of the normal modes.
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Now we can introduce the indices again:

Anm, k(T) =g m AT)Fw ; Dﬂm(T) = Dnm(o)[l Anm V(-[) (A51)

Thus we can write down our final results

Dan(T) = Pu(T) <BrVIB Y >= D oof0) A T)

Dnm(o) = expé %akbmk_%( |b nkF+ |b mkf)%: exé' % Z( hk - lq‘nk 2|+ bnk a'nk_ E)nkbm)é

O O . =
Anm(T) = eXpE' Z Vi |brye = bmkféz exp& \é[ B Bt By bmk‘( | B+ By |2)]§ (A52)
v, = Dx Eihﬂg—lm_l 7 limv, =0
k- 5‘3 Pk T O E R

Note, that Cruzeiro et al. [17] come to identical results in their derivations.

Now we are in the position to compute the thermally averaged Hamiltonian and its degivatie expectation values of
the phonon operators occuring and the thermal averages of all terms containing explicitely i in any form were derived above
For the operators of the amide-1 oscillators we have only simple relations

e<0| a;am|0>e = 0’ e< qana+rrl 0>e = e< qénm"’ a+ma'1| (}e = 6nm

- (A53)
e< Ol é-maJ;wén' atn’ | O>e = e< 0|(6 mn+ a+nam)(6n1r1+ a:n’ an’)l 0>e = 6mn5 mh
for the expectation values needed for the computation.ofit¢ Hamiltonian is
Azeoy @23y (@t G dn)t Y hobiber 51 Y neoBulbir b)ara
n 1 Ho b S nk{bk T bk
n n k nk (A54)
Hv=< D1,V [H| Dy, V>
and the expectation value consequently
Hy =€ Z ENE Jz 3;[@&1 D, n+1(V)+ a,1 D, ﬁ-l(v)]+ zhwk DI?hk( B+ 51k)+ | I, f+v k+1|:|| af (A55)
n n nk E ZH

The thermal averages of thecontaining terms have been derived above and thus we obtain in agreement with [17]

H(1)= 3 (7). -

EOZP% F ‘JZ a;[@m Dnml(T)+ 8,1 D, r+1( -[)]+%hwk§ak( B+ hk)"'l by f+v k+%gl af (A56)
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The differentiation of H(T) with respect tg*ayields inserted into the first line of eq. (A32)

lhan = _%Z(bnkbak_b;kbnk)an'k 803.n_‘-][ an+1Dn,n+1(T)+an—an,Prl(T)] +
k

. 1
+ Z T oo E Bnk(bnk+ bnk)+ o P+ vic+ Egan

Multiplying our coefficients awith a phase:

HitO

1 . «
an:eng‘Ego+zhwk§’k+§%Cn D &A= GGy
3

we obtain finally

ine, = - % Z (bnkb:ﬂ(_ b;kbnk)Cn -J [ Cnd Dn,n+1(T) + Cn—an,n—l(T)] + Z T ook [ Bnk(bnk+ b*m)"' |bnk |2 ]Cn
k k

Differentiation of H(T) with respect to :lg(yields

, : ing .. . 0 9 9 O
|h|Cn |2 bk = _IE(CnCn"' Cn Cn) bk * h(x)k(Bnk+ bnk)lcn |2_JZ Cm épmﬂm Dm,wl(T)+ Cm—lﬁ Dm,m—l(T)é

Note, that the phase factors at thecancel out already iki(T). From (A59) we obtain

.. d ok . * x x
oan=1% a Ic, |2 = |7I(Cn cntcn Cn) =-J [Cn+1 Dn,n+1(T) + Cn—an,n—l(T)] cntJ [Cn+ 1Dn+ 1n (T) *+Cn-1Dn- Jn(T)] Cn

Thus the norm N of our state is conserved

e ..d . d
i7iN =ih— a,f =ih— c. [ = a. =0
dthF dtZlnF z
The differentiation of the D’s is trivial:

0

O 10 O
EDm,mﬂ(T):@Vk*'l)brﬂkémn"'vlpm§ mw‘nl_HVRLEEbr(@ ik O ,rﬁm)ED,ntﬂ(-D

This together with the explicit form af yields, after division bycLlZ, the final equations of motion for theg,:

*

. 0
70y = hw (B +bo)+ ngnk— bay ngﬁ 1) D 1)Cn+1 +V, Dnﬂ’n(T)C”:l H

Cn ¢, 0
Cna C;—l [E
+ (bnk — by, k)évk +1) Dy T)c_ * Vi Dn—l,n(T)C_*%
n n

Note finally that for T = 0 Ky, (T = 0) = 0, and thus the conventionaltequations are obtained.

(A57)

(A58)

(A59)

(A6O)

(A61)

(A62)

(A63)

(AB4)
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Appendix B: Spectrum for an Initial One-Site Excitation in a Decoupled Open Chain of Amide-1 Oscillators

In a decoupled chain of amide-I oscillators we have the state

——Ds0+—z hQKE N
(B1)

lo(t)>=e "7 DZ% CECLE

where in the exponent we have the zero-point energy of the lattice phonons (the lattice is still present, although it is

decoupled) and,=0.205 eV. Thea (t) obey the equations of motion

nn= —J[én nd 1‘5nN)+ On ,n-l(l_5 n)]

iha=Ja; W JIW=¢ ; ‘c'kl(:skékk ;
gk——ZJCOSD L v Whe = sin nk N, Narbitrary (B2)
N+1 O " \/ N+1 E H
This is easily solved via
(B3)

<

lh\/\fa—WJWWgD it =¢gc; c= a

The diagonal system of equations focan be directly integrated between 0 and t (the initial excitation is at site 0) and

yields

N
(B4)

it
an(t) = ZWnkV\]:)k ent an(O) = don
k=1
Thus the time dependent state (which solves the time dependent Schrddinger equation for the decoupled system with t

lattice in its equilibrium exactly, as shown in [14]) is

_%EEOJéthKE N X _iLSk
19(t) >= “ Wi Wie” 410> ; [¢(0)>="4]|0> (B5)
n,k=1
and consequently the autocorrelation function:
(B6)

_it Qe N i
A)=<o00()>=e 7% 1w F E o, =Eeorey)

k=1

Thus the absorption cross section is given by

=~|:

g, itO ol g
o(w):sreaagwReg g dE 4ﬂaéwZ|\MJ' bk ae o %wz | wiso-0) gy

From this it is obvious that in contrast to periodic boundary conditions, in the open chain now we have a weighted
superposition of delta peaks, where the weight just represents the splitting as discussed in the main text for the coupled ce

also. Thereforehis splitting cannot be viewed as a signature of soliton formation
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Figure 14 Absorption cross section | (in arbitrary units) as
function of the frequenay of the incident radiation for the
case of free dispersion, calculated with eq. (B8) for an open
chain of 51 units, J =0.967 meV, an initial one-site excitation
atsite o and T = 3 ms for

(@o=1 (b)o=2 (c)o=3

Note finally, that for the case of a finite simulation tinig¢ e would obtain

N N ) _ T
o(w)= 3”20(&30021 Wk IZI cogw—wy )t dt= 8’ ang VY, 1M
k= r= W= Wy
E 0
, , 0 N ,sin(w, ~w, JT D 8)
o(w, ) = 8mPaagw [ Wy, |* T+ Z W, P K
|:| K= (A)k _(L)k- D
= K2k B

This shows, that in case of smalit is possible to obtain artificially negative values for the cross section. Figure 14 shows
spectra obtained with eq. (B8) for an exampl& of 3 ms and three different initial excitation sites. Obviously, the splitting
which was observed in Figure 8 occurs qualitatively also in this case of free dispersion. However, the fifitaadkas the
spectra less regular than those obtained in systems containing solitons.
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